\(\int \frac {d+e x}{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\) [1958]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-2)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 50 \[ \int \frac {d+e x}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 (d+e x)}{\left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \]

[Out]

-2*(e*x+d)/(-a*e^2+c*d^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 50, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {650} \[ \int \frac {d+e x}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 (d+e x)}{\left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

[In]

Int[(d + e*x)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]

[Out]

(-2*(d + e*x))/((c*d^2 - a*e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

Rule 650

Int[((d_.) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[-2*((b*d - 2*a*e + (2*c*
d - b*e)*x)/((b^2 - 4*a*c)*Sqrt[a + b*x + c*x^2])), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] &&
NeQ[b^2 - 4*a*c, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 (d+e x)}{\left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.78 \[ \int \frac {d+e x}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 (d+e x)}{\left (c d^2-a e^2\right ) \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[(d + e*x)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]

[Out]

(-2*(d + e*x))/((c*d^2 - a*e^2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

Maple [A] (verified)

Time = 2.41 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.06

method result size
trager \(\frac {2 \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}}{\left (e^{2} a -c \,d^{2}\right ) \left (c d x +a e \right )}\) \(53\)
gosper \(\frac {2 \left (c d x +a e \right ) \left (e x +d \right )^{2}}{\left (e^{2} a -c \,d^{2}\right ) \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {3}{2}}}\) \(58\)
default \(\frac {2 d \left (2 x c d e +e^{2} a +c \,d^{2}\right )}{\left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}+e \left (-\frac {1}{c d e \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}-\frac {\left (e^{2} a +c \,d^{2}\right ) \left (2 x c d e +e^{2} a +c \,d^{2}\right )}{c d e \left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}\right )\) \(212\)

[In]

int((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/(a*e^2-c*d^2)/(c*d*x+a*e)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.30 \[ \int \frac {d+e x}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{a c d^{2} e - a^{2} e^{3} + {\left (c^{2} d^{3} - a c d e^{2}\right )} x} \]

[In]

integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

-2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(a*c*d^2*e - a^2*e^3 + (c^2*d^3 - a*c*d*e^2)*x)

Sympy [F]

\[ \int \frac {d+e x}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {d + e x}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Integral((d + e*x)/((d + e*x)*(a*e + c*d*x))**(3/2), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {d+e x}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*e^2-c*d^2>0)', see `assume?`
 for more de

Giac [F(-2)]

Exception generated. \[ \int \frac {d+e x}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Unable to divide, perhaps due to rounding error%%%{%%%{1,[1,1,0]%%%},[2,0]%%%}+%%%{%%{[%%%{-2,[0,0,1]%%%},0
]:[1,0,%%%{

Mupad [B] (verification not implemented)

Time = 10.12 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.06 \[ \int \frac {d+e x}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {2\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{\left (a\,e+c\,d\,x\right )\,\left (a\,e^2-c\,d^2\right )} \]

[In]

int((d + e*x)/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2),x)

[Out]

(2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/((a*e + c*d*x)*(a*e^2 - c*d^2))